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1. INTRODUCTION

In a recent paper the author showed that contrary to popular

opinion, strict Frechet differentiability of the class of M-functionals

is frequently possible. A necessary requirement for existence of the

Fr~chet derivative is that the defining psi function is uniformly

bounded, and this naturally excludes those nonrobust estimators

such as the maximum likelihood estimator in normal parametric models.

On the other hand, in that paper, smoothness assumptions were imposed

on the defining psi function which are not appropriate for many common

robust proposals in M-estimation theory, such as Huber's(1964) minimax

solution and Hampel's(1974) three part redescender used in estimating

location. A host of robust solutions for more general parametric

families are obtained through Hampel's(1968) lemma 5, and generalizations

of it (cf. Hampel 1978), and these almost invariably are functions with

"sharp corners". Indeed the problem that is presented by failure of

psi functions to have continuous partial derivatives has been the

focus of papers by Huber(1967), Carroll(1978) with respect to proofs

of asymptotic normality. While Frechet differentiability of the M-functional

apriori gives asymptotic normality of the M-estimator, at least for

real valued observation spaces, it also gives a direct expansion

by which the degree of robustness can be directly measured through the

gross error sensitivity. The latter quantity is the supremum of the

absolute value of the influence curve of Hampel(1968,1974), and Huber(1977)

assuming existence of the Frechet derivative shows that the maximum

asymptotic bias in contaminated neighbourhoods of a parametric distribution

is proportional to the gross error sensitivity. Subsequently Fr~chet

differentiability of a statistical functional is an important tool

in the robust description of an estimator, and complements the definition

of a robust functional as one that is weakly continuous (cf. Hampel 1971).



In this paper the methods of nonsmooth analysis , described in the book

by F.H. Clarke(1983), are introduced to the theory of statistical expansions,

and are used here in the proofs of weak continuity and Frfchet differentia-

bility of M-functionals. Subsequently the conditions for Frechet

differentiability given in Clarke(1983) can be relaxed to include most

popular M-functionals.

The M-estimator is a solution of equations

F P (x,T) dF n(x) = 0 (1.1)R

where F is that distribution which attributes atomic mass I/n to each
n

of n independent identically distributed observations X1 ,. . . ..,Xn having

common distribution FOSG , the space of probability distributions

defined on some separable metrizeable observation space R. For the

applications in this paper it is only necessary to consider R = E,

the real line. The parameter rO, an open subset of Euclidean

r
r-space E , and F = fF T: Te} is a parametric family where the

usual assumption is that F = Fa for some 6e0. The function : RxO Er

can be defined through minimization of some loss function, or obtained

by some other optimal criteria.. The theory of robustness makes use of

the M-functional T defined on G, so that more generally T[G] is a

solution of equations

= J (x,T) dG(x) = 0 (1.2)

if a solution exists, T[G] = otherwise. Thus the estimator is

given by the functional T evaluated at F , and its asymptotic properties
n

follow from continuity and differentiability of T at F with respect to

suitable metrics defined on G This approach to asymptotic theory for

statistics was first considered by Von Mises(1947).

4q



To avoid ambiguity, and also for good statistical practice, the

concept of a selection functional p was introduced by Clarke(1983),

in order to identify in the event of several solutions of the equations (1.2),

that root which is to be the estimator. That is, the M-functional

is defined by *,p so that

SI(i,G) p(G,T) = P(G, T[,p,G]),

where

I(ij,G) =(t I ( (x,T) dG(x) = 0, To0}
fR

,if a solution exists. Otherwise T[p,p,G] = m. The functional T

is then Frechet differentiable at F with respect to the pair (G,d.),

for suitable metrics d* on G, if T can be approximated by a linear

functional TF which is defined on the linear space spanned by the

differences G - H of members of G, so that

T[G] -T(F] -T (G -F) I =o(d,(G,F)) (1.3)F

as d,(C,,F) 0 0, GEG. Essentially the expansion for Fr'chet differen-

tiability is dependent on a local expansion of equations(l.2), and

a robust selection functional will automatically select the Frechet

differentiable root, whenever one exists. To the latter end one uses

an auxilliary functional p(G,T) = IT - el to prove existence of a unique

Frechet differentiable root in a local neighbourhood of the parameter e

when considering the derivative at F Also it is sufficient to consider

the expansion (1.3) for T defined on G,'and the usual mathematical

extension of the domain of T to the linear space of signed measures is

of little importance here.

The Frechet derivative may be considered strong in the sense

that existence of the Frechet derivative for statistical functionals

implies existence of the weaker Hadamard or compact derivatives of

Reeds(1976), Fernholz(1983), and the Gateaux derivative discussed by

Kallianpur(1963), a special case of which is the influence curve

j .' .' ', ' o °, . . , , . ' .



IC(x,F,T) = Lim T[(1-e)F+c x ] - T[F
C- O

here 6 is the distribution attributing mass 1 to the point x.x

The Gateaux derivative is given by

I IC(x,F,T) d(G-F)(x),

which coincides with the Fr6chet derivative when the latter exists.

Unfortunately comments by Kallianpur(1963) which were in specific

relation to the maximum likelihood estimator (mle) led other researchers

to believe the derivative too strong to obtain. Indeed Huber(1981)

states Unfortunately the concept of Fr~chet differentiability appears

too strong : in too many cases, the Frechet derivative does not exist,
'I

and even if it does, the fact is difficult to establish.

In Clarke(1983) simple conditions for Frgchet differentiability of

M-functionals were given together with a counterexample to the comments

of Kallianpur.

Boos and Serfling(1980) introduce the related notion of a

quasi-differential which assumes the same expansion (1.3), but

restricts G=Fn  and allows for small order errors in probability

with respect to the Kolmogorov distance between Fn and F. This

expansion does not offer the same properties of robust description

of the estimating functional, and even the mean functional satisfies

this stochastic form of differentiability. Beran(1977) also adopts

a differential approach using the Hellinger metric, though this appears

to be for more specific application.

A weaker set of conditions than conditions A of Clarke(1983)

are introduced in section 2, though for smooth psi functions conditions

A of that paper are easier to apply. Theorem 2.1 of this paper is
I

necessary to show condition A4  , introduced here, holds for the popular

nonsmooth psi functions. It can be considered as a variation
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or a generalization of the Glivenko Cantelli result. Conditions A'

are used in sections 3 and 4 in the theorems that give existence of a

unique continuous and FMchet differentiable root of equations (1.2).

In particular the arguments for weak continuity follow when either of

Levy or Prokhorov metrics are used. Important examples of application

are given in section 5, together with the conclusion.

2. A DISCUSSION OF DEFINITIONS AND CONDITIONS A'

Suppose f maps Er  to itself and e is a point near which

f is Lipschitz. Denote Q f to be the set of points at which f fails

to be differentiable, which by Radermachers theorem is known to be a

set of Lebesgue measure zero. Let Jf(T) be the usual r x r matrix

of partial derivatives whenever T 0-af ,

Definition 2.1: The generaZized Jacobian of f at e , denoted by

3f(O) , is the convex hull of all r x r matrices Z obtained as

the limit of a sequence of the form Jf(Ti) where i -e and T i e f"

The generalized Jacobian af(O) is said to be of maximal rank

provided every matrix in 3f(e) is of maximal rank (i.e. nonsingular).

The following proposition is proved on page 71 of F.H. Clarke (1983).

Proposition 2.1: The generalized Jacobian Df(O) is upper semicontinuous,

which means, given E > 0 there exists a 6 > 0 such that for T U 6 (e)

"he open ball of radius 6 centered at e

3f(r) c 3f(O) + c Brr
rxr

Here Brxr is the unit ball of matrices for which B Brxr implies

IBII 1
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Remark 2.1: Without loss of generality we can assume IBII to be the

least upper bound of IByl where IyI 5 1

Frequently several solutions of equations (1.1), (1.2) can exist

whereupon a robust selection of the functional root is obtained using the

idea of a selection functional p introduced in Clarke (1983). The

robust selection functional retains the continuity properties of the selected

root in small enough neighbourhoods n(e,F) c G of a distribution F ,

which can be considered here to be defined by metrices d, . The M-functional

is then defined by p and p as T[p,p,.] . Typical choices for d*

include dk, dL , dp the Kolmogorov, Ldvy and Prokhorov metrics respectively.

Conditions A':

A': T[,p,F e
0

A' : p(x,r) is an r x 1 vector function on R x 0 which1

is continuous and bounded on R x D where D c 0 is some

nondegenerate compact interval containing a in its interior,

and R is some separable metrizable space

A' (x,T) is locally Lipschitz in T about 6 in the sense

that for some constant a

[ (XT) - l14x,)I < - el

uniformly in x e R and for all r in a neighbourhood of 6

A' Letting differentiation be with respect to the argument in
3

parentheses AKF (T) is of maximal rank at T = 6

A4 : Given 6 > 0 there exists an E > 0 such that for all G n(,Fe)

sUp TeD IKG(-() - KF (T)! <

and

AKG(z) 3KFa () + 6 Brxr uniformly in 4- D .
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Remark 2.2: A0' A0

Remark 2.3: For a function p satisfying A' it follows from remark

2.2 and theorem 6.1 in Clarke (1983) that given 6 > 0 there exists an

E > 0 such that for all Gcn(E,Fo)

supTO I KG(T) - KFo(r)I < 6

whenever n(,F0) is generated by metrics dk, d

This establishes the first part of condition A'

Remark 2.4.: If KF (T) is continuously differentiable in T at 0

then A3 - A' , where condition A3  is that of Clarke (1983).

Conditions A' - A' can be considered fairly straightforward, whereas

the condition A' is not so obvious. When R = E , the real line, it can
4

be shown to be a consequence of the following theorem, a proof of which is

detailed in the appendix. It is sufficient here to establish the result

for the Kolmogorov distance dk

Theorem 2.1 : Let A be a class of continuous functions defined on E

with the following properties: (1) A is uniformly bounded, that is,

there exists a constant H such that If(x)Il < H < for all f cA

and x =E ; and (2) A is equicontinuous. Let Fa G be given.

Then,

for every 6 > 0 there is an E > 0 such that dk(Fe,G) <

imp lies

s'PfeA suPx=Eu{-} 1 fdG {x fdFoi < 6 (2.1)

where integration is performed over the intervals I. which can be

either open or closed of the forn (--,x) or (--,xl
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Remark 2.5: A similar proof yieldsthe same result with dL replaced

by dk In some instances Frdchet differentiability with respect to

dk implies that with respect to dL , d following (6.2) of Clarke (1983).

Consider p with continuous partial derivatives bar on a finite

set of points S(T) . From F.H. Clarke (1983 pp. 75-83) it follows that

3KG(t) = fr(Y,T)dG(y) c ai(y,T)dG(y) , (2.2)

from which the right hand side can be expanded to a finite summation
m

fj (y,T)dG(y) + a a,(x,T)G(x}
xC-S(T)

J

Here f. eA and y- (y,z) = f jy,T) on the connected interval I.
3 3T 3'i

for j = 1,...m . Since is Lipschitz in T and 31p(x,T) bounded,

theorem 2.1 implies condition A'4

3. UNIQUENESS OF FUNCTIONAL SOLUTIONS TO EQUATIONS

For those psi functions which do not admit a unique root of

the equations, at least a unique root of the equations in a local region

of the parameter space about e can be shown to exist for small enough

neighbourhoods of F If conditions A' are with respect to Ldvy

or Prokhorov neighbourhoods, existence of a weakly continuous root is shown,

for which the global argument of Clarke (1983) can be used to select it if

more than one root exists. When the Kolmogorov distance is used only

consistency is directly established.

The following propositions are established on pp.252-255 of F.H. Clarke

(1983), and obviate the condition of continuous derivatives in the argument

for the inverse function theorem.

4 mS
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Proposition 3.1: Suppose f satisfies properties described in

Section 2 and

4 ,f-<5 inf af(e ) PI(e'f)11

where the infimum is taken over all matrices M(e,f) E af(e) , and for

some 6 O,TeU6 (e) impZies

2A f inf jjT)1M(-r'f)j1

Then "or arbitrary rT r2 E U6 (O) , the closure of the balZ U (a)

jf(r1 ) - f(r2 )1 > 2Af I -21-

Proposition 3.2: Under the conditions of Proposition 3.1

f(U 6 ()) contains U 5f(f(e))

Remark 3.1: For v UX 6 (f(6)) we can define f- (v) to be the

unique T G U 5(8) such that f(T) = v and Proposition 3.1 implies

f- 1 is Lipschitz with Lipschitz constant 1/(2Xf)

Lemma 3.1: Let conditions A' hold for some ,p . Then there is a

61 > 0 and an El > 0 such that for al1 G Cn(E1 ,F) any matrix

M( ,G) e KG( )

wi:: savis'y IIM(r,G) 11 > 2X Xhe'e \ is defined to be a value for which

M(6,F9) E (KFe(e) implies IM(O ,Fe) > 4X

Remark 3.2: If KF (r) is continuously differentiable in r then

the choice of X = I/(4 LM(e,Fa)-111 ) satisies the criterion of Lemma 3.1.

Proof of Lemma 3.1: Since KF  is upper semicontinuous, chooseF0

by Proposition 2.1 61 > 0 such that 3 (T) c3 (8) + AB whenever
F 8 F erxr

e U (fl By condition A' there exists an el > 0 such that

G E n- ,F.) implies

DKG(z) c KF (T) + NB uniformly in r e- D"i rxr
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Proof of Theorem 2.1: Given 6 > o choose c > o so that

F (E - C) < S/(8H)

For any x a (--,-c] and G within Kolmogorov distance 6/(8H) from Fe

IJ fdG - f fdFo0  5 H(G{I x + F {Ix )

x x

- H(G{E - C1 + F {E - CI)

- 6/2

Let E' be given by Lemma 6.2 for the choice of n = 6/2.

Choose E = min(E', 6/(8H)}. Then for arbitrary x > c and G within

Kolmogurov distance E from Fa

fdG - f fdF 0  H(G{E -C} + F0{E- C})X+II SUp~ i~i -~ l

• x x + u v -l fdG - n fdF0J1

< 6/2 + 6/2 by Lemma 6.2

Hence

dk(G,F0) < E implies

supfeA SUPxeE [i fdG - ffdF e< 6

x

° . - .. . . . . . . . . ., . ...

,' ' :,l ' ' , r'-*'. ' .-'-',.,j, -w, u , _ :. :. . _ ,6 . .,: . .: .r, .: -.: . . -- : .-.. , -. . . '..-. , -: . . .
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In particular we can choose 0 such that dk(G,Fe) < E* implies

G(xi 3 ) _ G(x ij-) < n/(4H), for j = I, ... , ni

i = 1, ... , k.

Let G* be the corresponding improper measure constructed from G.

Then

supfF A sUPxeC CnlfdG* - fC dG <

It is now convenient to consider 
case (b) first

SUpf JCI fdG* -'r!fdFe* 
(+

X X'eix

L I(bj-1,bj 1 K

[n[' 
n ' 

-

H dGF + UG~bj} - F a{b~} (*I

Choose o < E' < c* such that dk(G,FO) < E' implies (*)< n/ 4 .< e

There are two possibilities for case (a). Either

b < x < pi for some o 5 i x < n' ,
x ~x

whence

(.) < (,) + supfc.A  c fd(G-Fo) = (*) < n/4,
N. + X

or

pi x  - x 5- b ix+l, o - 5ix - n' -i

x
x x

for which

(+ N <_ (*) + H G(bi-+l) - ) F e(b i +1) + Fl(bi <

For either case if it happens that dk(G,FO) < E', then

supt sup fdG* -m follows.

Then the lemma follows.



niThat is, no further partitioning is necessary. Let {b.1.i= be the

set of points that partition (-c,c] formed by combining {x. I.ni
1) 3=0

i= 1, ... , k. Denote F* the possibly improper distribution that

attributes weight F 6(b) - Fe (b i) to the points bi, and weight

F (b-) - F (b~i to the points pi = -!. b+ b.+) i , n' -1

Suppose xeC is given. Then either: (.A) there exists an o !5 i : n'-1

such that bi < x < bi or (b) there exists an 1 : i : n' for

which x =b.
ix

For case (a) and feA

-dF fdF' <5 lf(p.) -~)dy

+ If~. c]n~xf(y)d(F*clfF F~n d '_. 1 ,. yfy)d 0

5 IF {C} 2H{F (b - F (b.)
4 a i 016x x

< n/4 + n2=

For case (b) where x =b. for some 1 5 ix n'
x

I Cnjfd J-x, fdF ( b J bb f (p.) f (y) dF, (y)

< ..F (CI 5 n/4

Hence

SUPfEA sup XC IfCnI fdF* -jn fdFe<

This is true for any distribution satisfying the inequalities (6.2).
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But this contradicts the initial assumption. Now since

G(y) - G(a) + tG(b-) - G(a)) j-- 1, ... ,k,

then
°1

G(y:) - G(y ) _ -(G(b-) - G(a)) < n

Note that yo = a, y, > a, and if Yk < b, then G(b-) - G(yk) 0.

Let

a = x0 < x < k< Xk, = b

k
be the partition formed from {y u {b}

Lemma 6.2: Let F be given. Also for given c > o let C (-c, c].

Then V n > o3 e' > o such that dk(G,F e) 5 E' implies

supf#A supxC IfCnixf(y)dG(y) - fCnI xf(y)dFO(y)I< n (6.1)

where intervals Ix  may represent either open or closed intervals from

- to X.

Proof: Given n > o, let {d } be the at most finite set of points

in C suc., rhat F (d) F (d) > q/(16H), if they exist. Since the

family A is equicontinuous and C , the closure of C, is compact, we

may choose a decomposition

-c =a 0 < a < ..... <am = c

so that a_ !5 x < y - a. implies 1f(x) - f(y)j < n/4, for every fEA,

*k
and i = ....... m. Let {a*}. be the further decomposition obtained

i i=0
m sota * a*

by combining the points {ai}.= and fdi. so that a 1 a

i = 1, ..., k. From Lemma 6.1 whenever F(a*-) - F (ai1 ) > n/(4H)

there exists a finite decomposition {x. .} n i. so that
iJ j=0

* a*
a i I  : Xio < Xil < ... < x. in a.1 ilin. 1

for which

Fe(x) F 6 (xi(j-l)) < n/(4H) j=l,... (6.2)

If F (a*-) - F (a*l < n/(4H), set n = 1, X1 = a_ and xi2 a
. . "• 6 I i..x.2 i-. .. . .a..
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p6. APPENDIX

The proof of theorem 2.1 is preceded by some necessary lemmas.

The notational abbreviation G(x-) =lim h~o G(x -h) is used:'

Lemma 1: Let G(x) be any distribution function for which G(x) -G(x)

ni/4 for x E(a,b), where a < b real, and ni > 0 are given. If

G(b ) -G(a) > n, then there exists a finite partition

a.............................< xkI b2

so that

G(x) - G(x j 1) < ri, .. ,l

Proof: Define G-1(t) =inf {xI G(x) t, x a [ab]

Since G is right continuous G(G-1(t)) t, choose

yj G1  (G(a) + jG (b) G- a

where k I is chosen so that

G(b-) -G(a) < k<2(G(b-) -G(a))

Then

G~y) G~ 5 1  G(a) + {G(b) G(a)) _ ~y 1)

G(a) +-G(b) G(a))

-(G(a) + -.y~-(G(b ) -G(a)) - ni/41

= (G(b) G(a)) - ni/4

If yj F. (a,b), j=1,.. .k, then y .> y- 1. For if yj yj1

then

G(y.) -G(y) = G(y. - G(y.j_

G(yj) -~ j,

n r/4



The problems induced by nonsmooth psi functions are not

unique to proofs of Frechet differentiability, and are applicable

to many asymptotic proofs. More frequently it is the case, that

rather than consider the difficulties, the appropriate smoothness

assumptions are made in the proofs, but somehow the results are

expected to be applicable to those continuous but nonsmooth functions also.

Nonsmooth analysis can the be considered as one possible avenue

of justifying such an approach.
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With the choice of selection functional p(G,T) I IT - I),

whereby the root closest to the median is selected, the functional

T[ a,b,c p,] is Fr~chet differentiable at 48- 2-

In a sense weak continuity and Fr6chet differentiability of the

functional at the empirical distribution function are also important.

Weak continuity at F indicates stability of the estimate in then

presence of rounding errors in the recording of observations,

and at least for sufficiently large n the effects of gross errors

can be considered blunted. Frechet differentiability at F on the
n

other hand, could be used to justify asymptotics involved in Edgeworth

type expansions and bootstrapping, for example as considered in

Hampel(1982), Beran(1982). When the psi function is smooth, the

only change to the arguments of Clarke(1983) forFrichet differentiability

at F , is to replace F0 by Fn in conditions A I-A4 .

Similarly the same substitution of conditions can be made in

the results of this paper, however if it should occur that an observation

X falls exactly at the point where *(X,) does not have a continuous

partial derivative at T = T[F n I then the generalized gradient

3KF (T[F n]) does not reduce to a single matrix. Even though such
n

an event would occur with probability zero in most forseeable examples

in whichthe underlying distribution was absolutely continuous, it can

be said nevertheless that the proof used in theorem 4.1 does not follow

through. In this instance the question of whether T is Frechet

differentiable at Fn is then left open. At least in the domain of

M-functionals defined through (1.2), it can be concluded that Huber's(1981)

remarks should not be interpreted in the sense that Frechet differentiability

is too strong. This is only the case for nonrobust M-functionals,

aand consequently we should consider Fr 'het differentiability an advantage.

o
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A' follows by Theorem 2.1 and because 9*(Tl-k 2 , ) and
4

D j+k-r2,,Z) are bounded. Assumption (4.1) holds for the

Kolmogorov distance through integration by parts and noting that

is a function of total bounded variation. Thus by Theorems 3.1

and 4.1 there exists a root that is Frdchet differentiable at

Fe = O[x-21 with respect to dk Since t has a bounded density

T is Frdchet differentiable with respect to dL , dp also.

Consequently, the infinitesimal robustness of this M-estimator

at the normal parametric distribution is evident through Frdchet

differentiability. It is also Frdchet differentiable at the

distribution F0  for which the density function of F0  is

f 0 (x) = (i-) e for xi <- k

Sk 2  kjxj
2(1-E) e for lxi > k

with k and E connected through

2)(k) 2 t(-k) -
k i-E

( )' being the standard normal density). Then the M-estimator

coincides with the mle, and provides another example of a robust

and asymptotically efficient estimator.

Examples where multiple roots of the equations exist include

Hampel's 3-part redescender M-estimator for location dependent on

three parameters a,b,c;

* a,b,c (x) = x IxI < a
a sign(x) a -. lxj 5 b

a c-lxl sign(x) b :5 lxI !5 c
c-b

0 c 5 lxi

"- "- "' ,' =" " -. . • -"- ' " " ; )"> ...- ,-. . ." '.-... .,.,' .'..:'.'...v .' .:.< .--,N -- -. ,,'-. -"-A
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(S.11 '(y)y)d4y) (

Condition A' follows since EelP] = 0 A' A' hold by
0 1' 2

inspection, and A' holds since M(Q) is nonsingular. Remark 2.2

suffices for the first part of A' To apply theorem 2.1 consider the

function

1 -(x-Ti)

f(x,T) = I (x) T2 T2

(TI-kT2, TI+kT2)

2
-(X-Tl )  -(X-T )

T2 T2

+ 1 1 W- + I (X) ) I -k
+T2 (-OMTl-kT2] ETl+kT2'-)]

-k -k2

It is clear that A = {f(.,Z):T4S-D} forms a bounded equicontinuous

class of functions on E . Also

aKG() F f(x,T)dG(x)

J (r1-kT2,3tj+kT2)

+ aP(-j-k-r2,Z)G{Tj-kT2} + Da(Tl+kT2,)G{l+kT21

where differentiation of P is with respect to the second argument, while

K f(x,)dF(x) , where Fe(x) =4-
".J(T -kT2,t l+kT2)f( , dF68

L0

I.

""-" .,'. -.. -. .- ". ..> ".' ".? "- • "-.'. - .. .- -*. . . . . .. . . - . -- . . , 2 . .
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for sufficiently large k Consider the two term expansion,

0 = KGk (T[Gk]) = KGk( ) + M(r k,Gk)(T[Gk]_6) , (4.3)

where tk- 6t < ITEGk] - , which tends to zero as k by

theorem 3.1, and rk is evaluated at different points for each

component function expansion obtained as a consequence of Proposition 4.1

(i.e. rk takes different values in each row of matrix M). See from

(4.3), (4.1) and Lemma 3.1 that

IT[Gk] 8 = O(KG (6))

Also,

T[Gk ] - -M(e)-1 KGk () - M(O)- (M(r k,Gk)-M(O)}(T[Gk] - e)

By upper semicontinuity of KG(T) in r and (4.2)

!IM(Tk,Gk) - M(e) I1 = o(l)

So

ITEGkI - 0 - T' (Gk-F)I o(l) 0 (d.(Gk,Fo)) : O(Ek)

5. EXAMPLES AND CONCLUSION

Huber (1964, 1981) introduced a proposal for estimation of location

and scale of the normal distribution defined as a solution of

f 2 Px 1j dF n(X) =0

where G = {(T1 ,T2 ): - < < 2, t > o} and the vector function

= (*,~'2) ' where

,1(x) max [-k , min(k,x)]

x : 1(X) 2  - B(k)

and O(k) = fmin(k2 ,x2 )dI (x) Here D denotes the normal distribution.

setting = (01,82) , where now distinguishes the vector parameter,

it follows that since K (8) is continuously differentiable, the Jacobian

*i', -'--. ....'..... ".. ." ............ " . ....
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Theorem 4.1: Let p(G,T) = IT-el and assume conditions A'

hold with respect to this functional and neighbourhoods generated by

the metrics d, on G . Suppose for all G G G

J ,(x,O)d(G-F0 )(x) = O(d,(G,F0 )) (4.1)

R

Then T[,p,.] is Frdchet differentiable at F with respect to

(G,d*) and has derivative

TF (G-Fo) = -M(O)- f (xe)d(G-F )(x)

To prove the theorem it is necessary to introduce the following

generalization of the mean value result described as Proposition 2.6.5

in F.H. Clarke (1983)

Proposition 4.1 Let f be Lipschitz on an open convex set U in

Er and let t, and T2 be points in U . Then one has

f(T 1 ) - f(T2) co 3f([r 1 ,T2]) (T2 -TI)

(The ight hand side above denotes the convex hull of all points of the

form Z(r2 -TI) where Z E f(u) for some point u in [T1 ,T2]

Since [co 3F([Tj,T 2 ])](r 2 -Tj) Co[3f([TJ,T 2])(T 2 -T1 )] , there is no

ambiguity.)

Proof of Theorem 4.1: Abbreviate T[p,P,.] = T[.l and let

K*,E be given by Theorem 2. Let {Ek } be so that ek + 0  ask as

k - and let (Gk} be any sequence such that Gk n(k,P) By

theorem 2, TEGk] exists and is unique in U K*(O) for k > k0  where

ko _ E . By A' see that for arbitrary 6 > 0

3KG ( ) KF + 6B uniformly in T a D (4.2)

k rxr

... . . . .
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Proof of Theorem 3.1 Since aKF (T) is upper semicontinuous in

choose 0 < K* < minG61,K) such that TeU (0) implies

infa K JMTG)II > 2A for all G en(ei,F)
G

where the infimum is taken over all matrices M(T,G) S 3KG(T) Here

61 , e , and X are defined in Lemma 3.1. Hence

4X(G) = infaK (e) I!Me,G) 1I > 2X

Choose 0 < E* E, so that the following relations hold

aKG(T) c aKF (T) + (X/4)Brxr  by A'4

c aKF ( ) + (X/2)Brxr by Proposition 2.1

c aKG(6) + Brxr by A'4

Then for every M(T,G) eaKG(T) there exists an M(e,G)e 3KG(e) such that

IM(T,G) - M(e,G) II < X < 2X(G)

whenever Ge n(E*,F) and uniformly in TP U K()

By Proposition 3.1 KG(.) is a one-to-one function from U K(e) onto

KG(U,*(O)) and by Proposition 3.2 the image set contains the open ball

of radius XK*/2 about KG(O) The argument for uniqueness now proceeds

as in Clarke (1983).

4. FRECHET DIFFERENTIABILITY

It will be assumed in this section that KF (T) has at least
6

a continuous derivative KF (T) at T = 8, which is denoted M(6)
This is common with absolutely continuous parametric families. With this

restriction Frdchet differentiability follows.

r 

6.
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Hence given M(r,G) 4aK G(r) for T 4_= U1() there exists M(o,Fe) aKF (e)

such that

IIM(t,G) - M(0,F)I 11 < 2A

whence by Proposition 3.1 JIM(T,G)JI > 2A

It is now possible to state and prove the uniqueness argument of Theorem

3.1 of Clarke (1983) using weakened conditions A' . The result also

implies existence of a weakly continuous root for either Levy or

Prokhorov neighbourhoods. As usual the following selection functional is

only used as an auxilliary device.

Theorem 3.1: Let p(G,r) = jrT-6 and suppose conditions A' hold.

Then given K > 0 there exists an E > 0 such that G Pn(E,F )

implies T[p,Q,G] exists and is an element of U (6) . Further

for this E there is a K* > 0 such that

I(p,G) n U*(0) = Tflp,P,G]

and 3KG~r) is of maximal rank for r e U ,(e) For any null sequence

of positive numbers {cn} let fGk} be an arbitrary sequence for which

Gk n(,k,FS) Then

tim T[,P,Gk T[, ,o,F ] = e
k-w

"" ' " : : " " :i :t ! i : '.__::: -".: : .-e

..6. .?: : - - - . . . .: . : : . .

-9 "-i ;-- -}
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